We have developed a new method for determining the corotation radii of density waves in disk galaxies, which makes use of the radial distribution of an azimuthal phase shift between the potential and density wave patterns. The approach originated from improved theoretical understandings of the relation between the morphology and kinematics of galaxies, and on the dynamical interaction between density waves and the basic-state disk stars which results in the secular evolution of disk galaxies. In this paper, we present the rationales behind the method, and the first application of it to several representative barred and grand-design spiral galaxies, using near-infrared images to trace the mass distributions, as well as to calculate the potential distributions used in the phase shift calculations. We compare our results with those from other existing methods for locating the corotations, and show that the new method both confirms the previously-established trends of bar-length dependence on galaxy morphological types, as well as provides new insights into the possible extent of bars in disk galaxies. Application of the method to a larger sample and the preliminary analysis of which show that the phase shift method is likely to be a generally-applicable, accurate, and essentially model-independent method for determining the pattern speeds and corotation radii of single or nested density wave patterns in galaxies. Other implications of this work are: most of the nearby bright disk galaxies appear to possess quasi-stationary spiral modes; that these density wave modes and the associated basic state of the galactic disk slowly transform over time; and that self-consistent N-particle systems contain physics not revealed by the passive orbit analysis approaches.
展开▼